IB placement test in Mathematics after grade 9 (V1)

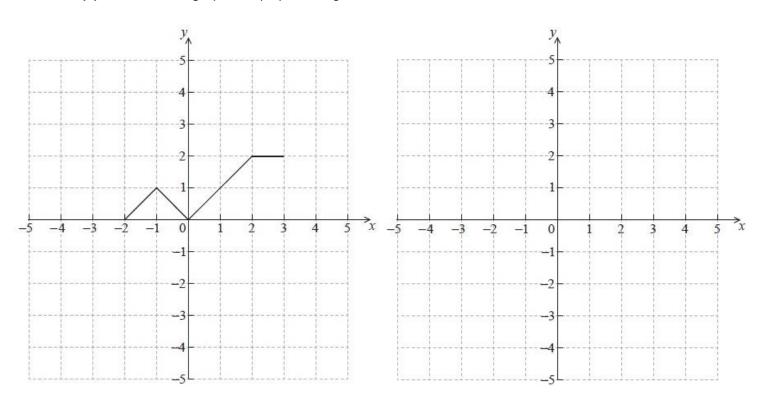
Non-calculator part, 50 minutes

1)	2)	3)	4)	5)	6)	7)	8)	9)	10)
6	2	8	5	2	2	2	6	6	6
marks out of 45 marks									

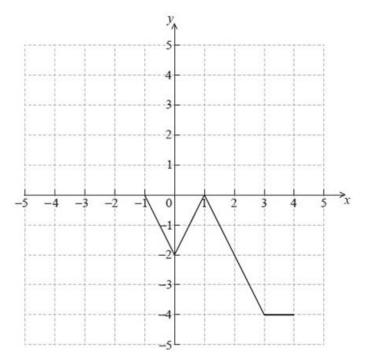
Calculator part, 50 minutes

1)	2)	3)	4)	5)		
11 marks	8 marks	8 marks	12 marks	6 marks		
marks out of 45 marks						

 marks	out	of	90	marks
 		- •	-	

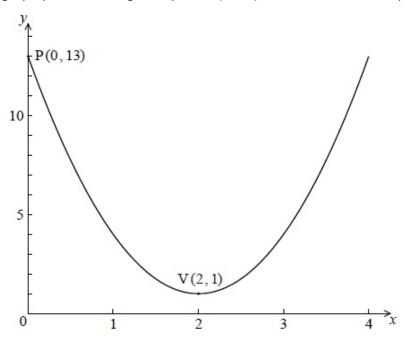

Grade boundaries:

Instructions:


Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures. All necessary work must be shown. Use appropriate notation.

- 1) The diagram below shows the graph of a function f(x), for $-2 \le x \le 3$.
 - (a) Sketch the graph of f(-x) on the grid below.

/3


(b) The graph of f is transformed into the graph of g. The graph of g is shown below. The function g can be written in the form g(x) = af(x+b). Write down the value of a and of b.

.....

Tick off the answer, which is **not** correct!

- П 0.000 000 005 · 101 mm
- 0.5 · 10⁻⁸ cm
- $5 \cdot 10^{-11} \, \text{m}$
- 5 · 10⁻⁸ mm
- 5 · 10⁻⁹ cm
- $0.005 \cdot 10^{-3} \, \text{cm}$
- The following diagram shows the graph of a quadratic function f(x), for $0 \le x \le 4$. 3) The graph passes through the point P(0, 13), and its vertex is the point V(2, 1).

Write down the **equation** of the axis of symmetry. (a)

/1

- The function can be written in the form $f(x) = a(x-h)^2 + k$. (b)
 - Write down the value of h and of k.

/2

(ii) Show that a = 3.

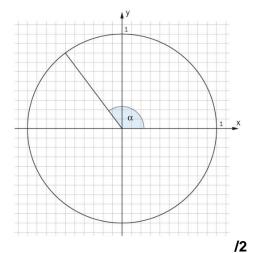
/2

Find f(x), giving your answer in the form $f(x) = Ax^2 + Bx + C$ (c)

/3

- 4) Given a triangle XYZ, with XZ = 4 cm, XY = 10 cm and \triangleleft X = 60° .
 - (a) Draw a neat labelled sketch of this triangle.

/2


(b) Find the **exact** area of triangle XYZ.

/3

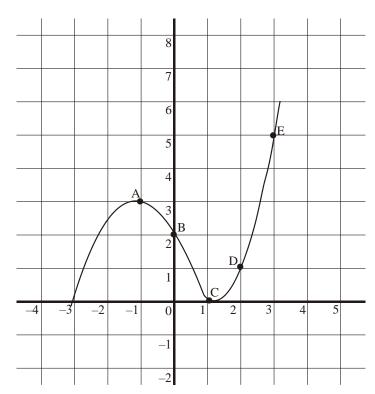
.....

.....

5) Use the diagram alongside to draw the sine and the cosine of the given angle α . /2 Label your diagram!

6) Convert into degrees. Give the exact value!

$$\frac{7\pi}{4} = \dots$$


7) Tick off all correct answers.

/2

$sin(180^{\circ} - \phi) = sin \phi$	0
$\cos(180^{\circ} - \phi) = \cos \phi$	0
$sin(90^{\circ} - \phi) = sin \phi$	0
$\sin(90^{\circ} - \phi) = \cos \phi$	0
$cos(180^{\circ} - \phi) = sin \phi$	0

8)	Cons	Consider two different quadratic functions of the form $f(x) = 4x^2 - qx + 25$.								
	The graph of each function has its vertex on the <i>x</i> -axis.									
	(a)	Find both values of <i>q</i> .			/2					
	(b)	For the greater value of q , solve $f(x) = 0$).		/2					
	(c)	Find the coordinates of the point of inter	section of the tw	o graphs.	/2					
9)	The	diagram below shows a circle of radius r	and centre O.	R ∕k	/4					
		he angle ∢AOB = θ.								
		length of the arc AB is 24 cm. area of the sector OAB is 180 cm ² .								
			-	$O\left(\theta\right)$ 24 $O\left(\theta\right)$	em					
	(a)	Find the value of r. Find the value of θ (in radians).	/3 /3	\ r\ //						
	(b)	Find the value of o (in radians).	73	A						
				\						

10) The sketch shows part of the graph of y = f(x) which passes through the points A(-1, 3), B(0, 2), C(I, 0), D(2, 1) and E(3, 5).

A second function is defined by g(x) = 2f(x-1).

(a) Calculate g(0), g(1), g(2) and g(3).

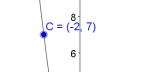
/3

(b) On the same axes, sketch the graph of the function g(x).

/3

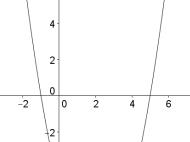
.....

1) Given the equation of the straight line g and the point P.


Line g: 2y - x + 4 = 0; point P(2,-3)

- (a) Using an <u>algebraic method</u>, find whether the point P lies on the graph of the function. /3
- (b) Find the equation of the function. Hence write down the gradient and the y-intercept. /4
- (c) Calculate the zero (x-intercept) of the function.
- (d) Draw the graph of the function in a coordinate grid.

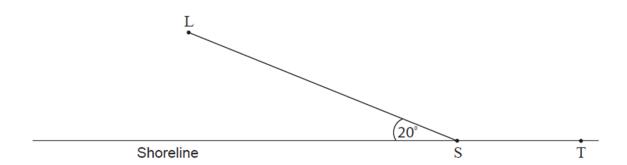
2) Use the information provided in the graph alongside to find the equation of the function in the form


$$f(x) = ax^2 + bx + c.$$

Show your working!

/8

10

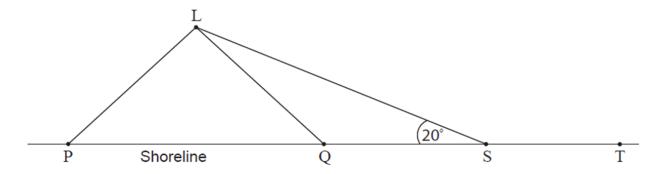


B = (4, -5)

3) The equation $x^2 - 3x + k^2 = 4$ has two distinct real roots. /8 Find the set of all possible values of k.

Please turn over!

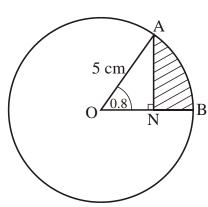
4) The following diagram shows a straight shoreline, with a supply store at S, a town at T, and an island L.



A boat delivers supplies to the island. The boat leaves S and sails to the island. Its path makes an angle of 20° with the shoreline.

(a) The boat sails at 6 km per hour, and arrives at L after 1.5 hours. Find the distance from S to L.

It is decided to change the position of the supply store, so that its distance from L is 5 km.


The following diagram shows the two possible locations P and Q for the supply store.

(b) Find the size of ⊲SPL and ⊲SQL.

(c) The town wants the new supply store to be as near as possible to the town.

- (i) State which of the points P or Q is chosen for the new supply store. /1
- (ii) Hence find the distance between the old supply store and the new one.
- The diagram beside shows a circle of radius 5 cm with centre O. Points A and B are on the circle, and ⊲AOB is 0.8 radians. The point N is on [OB] such that [AN] is perpendicular to [OB]. Find the area of the shaded region. /6

/2

/5

/4